Escherichia coli exonuclease III enhances long PCR amplification of damaged DNA templates.

نویسندگان

  • B Fromenty
  • C Demeilliers
  • A Mansouri
  • D Pessayre
چکیده

Recent development of the long PCR technology has provided an invaluable tool in many areas of molecular biology. However, long PCR amplification fails whenever the DNA template is imperfectly preserved. We report that Escherichia coli exonuclease III, a major repair enzyme in bacteria, strikingly improves the long PCR amplification of damaged DNA templates. Escherichia coli exonuclease III permitted or improved long PCR amplification with DNA samples submitted to different in vitro treatments known to induce DNA strand breaks and/or apurinic/apyrimidinic (AP) sites, including high temperature (99 degrees C), depurination at low pH and near-UV radiation. Exonuclease III also permitted or improved amplification with DNA samples that had been isolated several years ago by the phenol/chloroform method. Amelioration of long PCR amplification was achieved for PCR products ranging in size from 5 to 15.4 kb and with DNA target sequences located either within mitochondrial DNA or the nuclear genome. Exonuclease III increased the amplification of damaged templates using either rTth DNA polymerase alone or rTth plus Vent DNA polymerases or TAQ: plus PWO: DNA polymerases. However, exonuclease III could not improve PCR amplification from extensively damaged DNA samples. In conclusion, supplementation of long PCR mixes with E.COLI: exonuclease III may represent a major technical advance whenever DNA samples have been partly damaged during isolation or subsequent storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application.

Apurinic/apyrimidinic (AP) sites in DNA are considered to be highly mutagenic and must be corrected to preserve genetic integrity, especially at high temperatures. The gene encoding a homologue of AP exonuclease was cloned from the thermophilic anaerobic bacterium Thermoanaerobacter tengcongensis and transformed into Escherichia coli. The protein product showed high identity (80%) to human Ape1...

متن کامل

Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli.

Escherichia coli deficient in exonuclease III (xth gene mutants) are known to be hypersensitive to hydrogen peroxide. We now show that such mutants accumulate many more DNA single-strand breaks than do wild-type bacteria upon exposure to H2O2. DNA isolated from H2O2-treated xth- cells contains strand breaks that do not efficiently support synthesis by E. coli DNA polymerase I, indicating the pr...

متن کامل

The proofreading exonuclease subunit e of Escherichia coli DNA polymerase III is tethered to the polymerase subunit a via a flexible linker

Escherichia coli DNA polymerase III holoenzyme is composed of 10 different subunits linked by noncovalent interactions. The polymerase activity resides in the a-subunit. The e-subunit, which contains the proofreading exonuclease site within its N-terminal 185 residues, binds to a via a segment of 57 additional C-terminal residues, and also to h, whose function is less well defined. The present ...

متن کامل

Oligoribonucleotide (ORN) Interference-PCR (ORNi-PCR): A Simple Method for Suppressing PCR Amplification of Specific DNA Sequences Using ORNs

Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences withou...

متن کامل

Minimizing DNA contamination by using UNG-coupled quantitative real-time PCR on degraded DNA samples: application to ancient DNA studies.

PCR analyses of ancient and degraded DNA suffer from their extreme sensitivity to contamination by modern DNA originating, in particular, from carryover contamination with previously amplified or cloned material. Any strategy for limiting carryover contamination would also have to be compatible with the particular requirements of ancient DNA analyses. These include the need (i) to amplify short...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 11  شماره 

صفحات  -

تاریخ انتشار 2000